Tangent bundle of unit 2-sphere and slant ruled surfaces
نویسندگان
چکیده
In this paper, an isomorphism between unit dual sphere, DS2, and the subset of tangent bundle 2-sphere, T?M, is represented. According to E. Study mapping, a ruled surface in IR3 corresponds each curve on DS2. Through isomorphism, new forms surfaces called slant were introduced. Moreover, conditions for these be given. Finally, unique ?q?,?h? ?? corresponded striction natural lift T?M.
منابع مشابه
Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure
We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملTriple tangent flank milling of ruled surfaces
This paper presents a positioning strategy for flank milling ruled surfaces. It is a modification of a positioning method developed by Bedi et al. [1]. A cylindrical cutting tool is initially positioned tangential to the two boundary curves on a ruled surface. Optimization is used to move these tangential points to different curves on the ruled surface to reduce the error. A second optimization...
متن کاملTetrahedral Mesh Construction for Unit Tangent Bundle over Genus-Zero Surfaces
Unit tangent bundle of a surface carries various information of tangent vector fields on that surface. For 2-spheres (i.e. genus-zero closed surfaces), the unit tangent bundle is a closed 3-manifold that has non-trivial topology and cannot be embedded in R. Therefore it cannot be constructed by existing mesh generation algorithms directly. This work aims at the first discrete construction of un...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2023
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2302491k